Tutorial 3: I/O and Memory Structure

1. Distinguish between synchronous and asynchronous I/O.

- Synchronous I/O: The CPU waits until the I/O operation completes (no overlap).
- **Asynchronous I/O:** The CPU continues executing other tasks while the I/O operation is in progress.

2. What is the function of the device-status table?

It stores information about each I/O device (type, address, and state). The OS uses it to manage multiple devices and check their current status.

3. Explain the purpose of Direct Memory Access (DMA).

DMA allows high-speed devices to transfer blocks of data directly between memory and the device **without CPU intervention**, improving performance and reducing CPU workload.

4. Describe what happens when the CPU uses DMA for disk operations.

- The disk controller transfers data directly from disk buffer to main memory.
- The CPU is interrupted only once per block transfer, not per byte.
- This allows CPU and I/O to work in parallel.

5. Differentiate between ROM and RAM.

Aspect	RAM	ROM
Volatility	Volatile	Non-volatile
Function	Temporary storage for active processes	Permanent storage for firmware
Write capability	Read/write	Read-only

6. Define caching and explain its purpose.

Caching is temporarily storing frequently used data in faster storage to reduce access time. It improves performance by avoiding repeated access to slower storage.

7. Give examples of caching at different levels.

- **Hardware:** CPU cache (L1, L2, L3)
- Operating System: Disk cache or page cache
- Software/Application: Web cache or database cache

8. What are the design challenges in caching?

- Cache size limitations
- Replacement policies (deciding which data to remove)
- Consistency between cache and main memory

9. Describe the memory hierarchy from fastest to slowest.

Registers → Cache → Main Memory → Secondary Storage → Tertiary Storage (Speed decreases, size and cost per bit decrease down the hierarchy.)