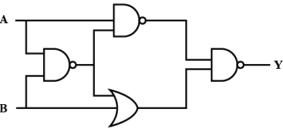
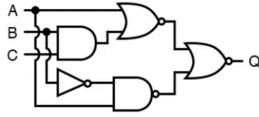
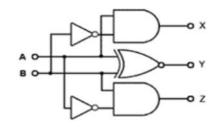

Question 1


Complete the following:

1	For multi-input XNOR gate, the output is "1" when the total number of ones in the input signals is
2	The decimal value of the hexadecimal number (AA) is
3	For the gate shown, the output of the gate if $B=0$, the output X is
4	If both inputs of a NAND gate are connected to a single line A, the output will be
5	For the Boolean function F=A'+B.C+B, the dual (F _D) is
6	The Boolean function $F(A, B, C) = \sum m(0, 2, 5)$ can be represented also by maxterms as
	Convert the hexadecimal number A5 to decimal
7	
8	identifies the symbol of gate
9	The simplification of the Boolean expression $\overline{(\overline{A}B\overline{C})}+\overline{(A\overline{B}C)}$ is
10	The complement of the function, $F = wx + yz$ is


	The maxterm M ₆ of a Boolean function F(X, Y,Z) is
11	
	Find the Boolean expression X for the shown Figure:
12	
	c
	The simplification of the Boolean function $F = (x + y)(x + y')$ is
13	The simplification of the Boolean function $\Gamma = (x + y)(x + y)$ is
13	
	The simplification of the Boolean Function $F = y(y'+x)+y$ is
14	
17	
	Using K-Map , the function $F(X,Y,Z) = \Pi(1,3,7)$ can be expressed as
15	
	The XNOR gate output is high=1 if the two inputs are
16	
	In a 4-variable function F(A,B,C,D), how many minterms are possible?
17	
	For a Boolean function with two variables A and B, which minterm corresponds
18	to the combination A = 1 , B = 1?
	••••••••••••••••••••••••••••••
	The output of the AND the shown gate is logic-1 if the binary input ABCD is
19	â →
	° → →
	Simplify the Boolean function using a 3-variable K-map: $F(x,y,z)=\sum (0,2,4,5,6)$
20	
	Using Boolean Algebra simplify the following expression: $F = (x + y)'(x' + y')$
21	
	Applying De Morgan's Law to the expression: $F = \overline{((AB' + C)(A' + B'D))}$
22	

Question 2:



2. Write a **Boolean expression** for the output **y** of the circuit described by the shown logic diagram.

3. Write a **Boolean expression** for the output **y** of the circuit described by the shown logic diagram.

4 .From the following truth table, write the Boolean equation of **f1** as a **sum of minterms** and **f2** as a **product of maxterms**.

A	В	С	F1	F2
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	0	0
1	1	0	1	0
1	1	1	0	1

Question 3

1.	Complet	e the	fol	lowing
----	---------	-------	-----	--------

NAND gate

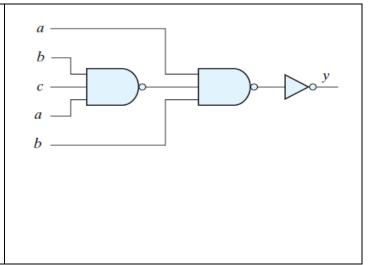
Logic Symbol Logic expression	Tr	uth ta	ble
	х	у	F
Logic expression			

NOR gate

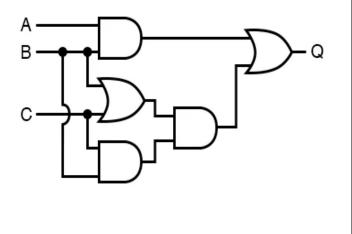
Logic Symbol	Truth table					
	х	у	F			
Logic expression						

AND gate

Logic Symbol	Truth table
	x y F
Logic expression	
	·


XOR gate

Logic Symbol	Truth table						
	х	у	F				
Logic expression							


2.	From the f	ollowing	truth	table,	write	the
	Boolean e	equation	of f1	as a	sum	of
	minterms	and f2	2 as	a pr	oduct	of
	maxterms	j.				

Α	В	С	F1	F2
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	0	0
1	1	0	1	0
1	1	1	0	1

3. Write a **Boolean expression** for the output **y** of the circuit described by the shown logic diagram. Then **simplify** it

	4. Write expression for the output Q then list the Truth Table of the output Q								
Q=	В—	•							
	Α	В	С	Q		_			
							l		

5. Simplify the following Boolean functions, using three-variable K maps

a.
$$F(A, B, C) = \sum m(0, 2, 6, 7)$$

h	$\mathbf{F}(\mathbf{x})$	Δ	R	(C)	\	Σ.	m	()	1	2	3	7
ν.	$\mathbf{r}_{\mathbf{U}}$	Α,	D,		, —	4	ш	v.	. 1.	. <i>–</i>	J,	

Question 4:

Complete the following:	
1	The complement of the function, $\mathbf{F} = \mathbf{w}\mathbf{x} + \mathbf{y}\mathbf{z}$ is
2	The simplification of the Boolean function F=xyz + x'y + xyz' is
3	Convert (AB) 16 into its decimal equivalent
4	For multi-input XNOR gate, the output is "1" when the total number of ones in the input signals is
5	Find the Boolean expression X for the shown Figure:
6	Find the dual function of $f = ABC + (\overline{A} + B + D)(AB\overline{D} + \overline{B})$
7	The simplification of the Boolean function $\mathbf{F} = (x + y)(x + y')$ is
8	The Boolean function $F(A, B, C) = \sum m(0, 2, 5, 6, 7)$ can be represented also by maxterms as
9	a) NAND b) NOR c) XNOR d) XOR