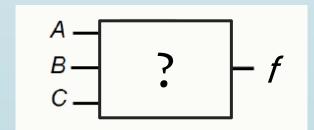


Digital Engineering

Assoc. Prof. Osama Elnahas, Dr. Dina Abdelhafiz Dr. Bassant Tolba, Dr. Radwa Rady


Second Year –Information Technology Program Fall 2025

Lecture 3 Truth Table

Logic Circuit Design

- You will be given a word description for the function required to be implemented.
- **Example:**
 - Design a 3-bit prime number detector circuit.
 - Design a prime number detector circuit for the numbers 0-7.
 - ■Given a 3-bit input N = ABC, design a circuit that will output f=1 in case of N = prime number in binary, and output f=0 otherwise.

- The first step is to construct the circuit truth table.
- It tells what the function will output in each case of input.
- How many inputs ??
- Remember: An n binary bit is used to represent 2ⁿ numbers with the values $0 \rightarrow 2^{n-1}$
- The input range is 0-7. Then, we have 3 inputs (3 binary bit ABC).

Α	В	С	f

- Regardless of the circuit or its functionality.
- In the input side we need to put all the input combinations.
- How to fill those combinations?

A	В	С	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- The number of rows = 2^n , where n is the number of inputs.
- ► Here n=3 then the number of $rows = 2^3 = 8$

A	В	С	f

In the right most bit, fill in 0,1,0,1,0,1,... from top to down.

A	В	C	f
		0	
		1	
		0	
		1	
		0	
		1	
		0	
		1	

- In the right most bit, fill in 0,1,0,1,0,1,... from top to down.
- In the second right most bit, fill in 0,0, 1,1, 0,0, 1,1, ... from top to down.

Α	В	С	f
	0	0	
	0	1	
	1	0	
	1	1	
	0	0	
	0	1	
	1	0	
	1	1	

- In the right most bit, fill in 0,1,0,1,0,1,... from top to down.
- In the second right most bit, fill in 0,0, 1,1, 0,0, 1,1, ... from top to down.
- In the next bit, fill in 0,0,0,0,
 1,1,1,1, ... top to down.
- Repeat till the left most bit.

A	В	С	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Till now, we constructed the input side only. It is the same in any 3-input circuit.

Now, it is required to construct the output side.

Α	В	С	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

From the word description of the circuit, the output f=1 in case of N = prime number in binary, and the output f=0 otherwise.

ecimal	
0	
1	
2	
3	
4	
5	
6	

A	В	C	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

From the word description of the circuit, the output f=1 in case of N = prime number in binary, and the output f=0 otherwise.

■ Done with the truth table.

Decim	
0	
1	
2	
3	
4	
5	
6	
_	

A	В	С	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

This is the first step in designing a circuit.

- The next step is to convert it into circuit. How?
- We will learn many ways along the course.

•	-
cima	
CTIIIa	4

0

1

2

3

4

5

6

7

Α	В	С	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

■ How many inputs ??

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

Α	В	С	F

- \blacksquare How many inputs ?? n=3 (ABC)
- ► How many rows ??

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

How many	inputs	?? n=3 ((ABC)
----------	--------	----------	-------

- How many rows $?? 2^n=8$
- How to fill the input side (ABC columns) ??

Α	В	С	F

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

■ How mai	ny input	ts ?? n=3	(ABC)
			•

- \blacksquare How many rows ?? $2^n=8$
- ► How to fill the input side (ABC columns) ??

Α	В	C	F
		0	
		1	
		0	
		1	
		0	
		1	
		0	
		1	

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

■ How many	inputs	?? n=3	(ABC)
------------	--------	--------	-------

- \blacksquare How many rows ?? $2^n=8$
- ► How to fill the input side (ABC columns) ??

Α	В	С	F
	0	0	
	0	1	
	1	0	
	1	1	
	0	0	
	0	1	
	1	0	
	1	1	

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

- \blacksquare How many inputs ?? n=3 (ABC)
- How many rows $?? 2^n=8$
- ► How to fill the input side (ABC columns)??

Α	В	С	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$

- How do you think we could fill in the output side??
- Previously we had a word description. Now how??

Α	В	С	F
0	0	0	
0	0	1	;
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

■ Substitute in the equation.

Α	В	С	F
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

■ Substitute in the equation.

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- This is another case.
- Given a function equation. Example: $F = A \cdot \overline{B} + C$
- It is required to find its truth table.

- Substitute in the equation.
- **■** Done.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- Remember: To get the dual of a function: Replace operators:
 + ↔ · and replace constants
 0 ↔ 1: (Variables are not changed).
 - ightharpoonup Example: $F = A \cdot \overline{B} + C$
 - Then: $F^D = (A + \bar{B}) \cdot C$
- \blacksquare Given the truth table of F.
- $lue{}$ How do you think could we get the truth table of F^D ??

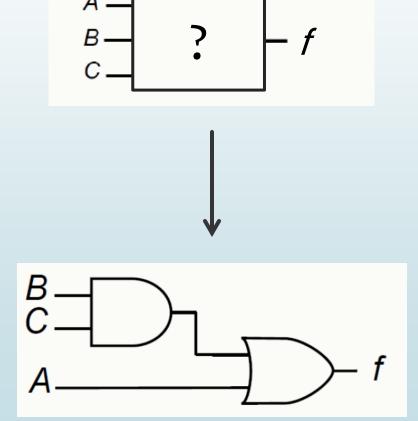
Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- Remember: To get the dual of a function: Replace operators:
 + ↔ · and replace constants
 0 ↔ 1: (Variables are not changed).
- From this rule, replace all constants $0 \leftrightarrow 1$
- This is the truth table but with reversed rows.

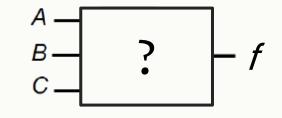
A	В	С	F
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	0

- Remember: To get the dual of a function: Replace operators:
 + ↔ · and replace constants
 0 ↔ 1: (Variables are not changed).
- From this rule, replace all constants $0 \leftrightarrow 1$
- This is the truth table but with reversed rows.
- Rearrange the rows. Reverse them up down.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

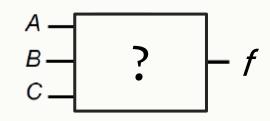

Check it by substituting in the equation $F^D = (A + \overline{B}) \cdot C$

Done.

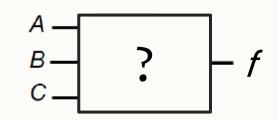

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- This is another case.
- This is reverse engineering.
- Given an unknown chip and it is required to find its truth table, equation and circuit diagram.

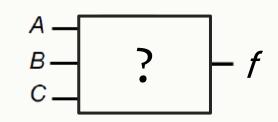
■ First find the truth table and then use any of the upcoming methods to find the equation and circuit.



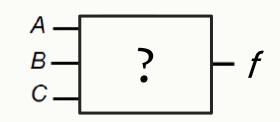
First construct the input side using the same previous steps.


■ How many inputs ?? n=?

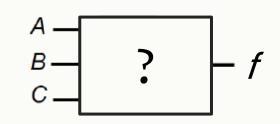
- First construct the input side using the same previous steps.
- \blacksquare How many inputs ?? n=3 (ABC)
- How many rows ??


Α	В	С	F

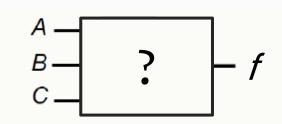
- First construct the input side using the same previous steps.
- \blacksquare How many inputs ?? n=3 (ABC)
- \rightarrow How many rows ?? $2^n=8$
- How to fill the input side (ABC columns) ??


A	В	С	F

- First construct the input side using the same previous steps.
- \blacksquare How many inputs ?? n=3 (ABC)
- \rightarrow How many rows ?? $2^n=8$
- How to fill the input side (ABC columns)?
- ► How do you think could we fill in the output side ??


Α	В	C	F
0	0	0	;
0	0	1	;
0	1	0	;
0	1	1	;
1	0	0	;
1	0	1	;
1	1	0	;
1	1	1	;

- First construct the input side using the same previous steps.
- \blacksquare How many inputs ?? n=3 (ABC)
- \rightarrow How many rows ?? $2^n=8$
- How to fill the input side (ABC columns)?
- How do you think could we fill in the output side ?
- Do it empirically: Apply each input and measure the output.


Α	В	C	F
0	0	0	0
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- First construct the input side using the same previous steps.
- \blacksquare How many inputs ?? n=3 (ABC)
- \rightarrow How many rows ?? $2^n=8$
- How to fill the input side (ABC columns)?
- How do you think could we fill in the output side ?
- Do it empirically: Apply each input and measure the output.

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- First construct the input side using the same previous steps.
- \blacksquare How many inputs ?? n=3 (ABC)
- \rightarrow How many rows ?? $2^n=8$
- How to fill the input side (ABC columns)?
- How do you think could we fill in the output side?
- Do it empirically: Apply each input and measure the output. Done.

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1