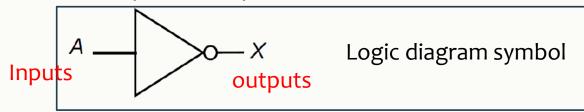


Digital Engineering

Assoc. Prof. Osama Elnahas, Dr. Dina Abdelhafiz Dr. Bassant Tolba, Dr. Radwa Rady

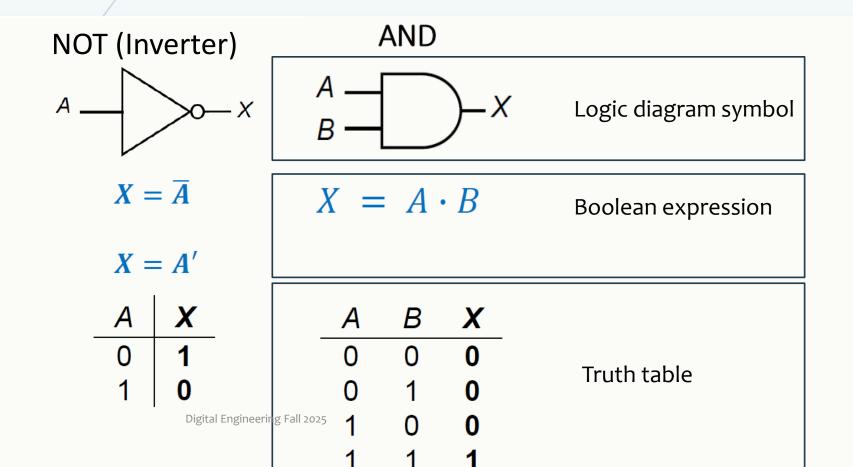

Second Year –Information Technology Program Fall 2025

Lecture (2)

3

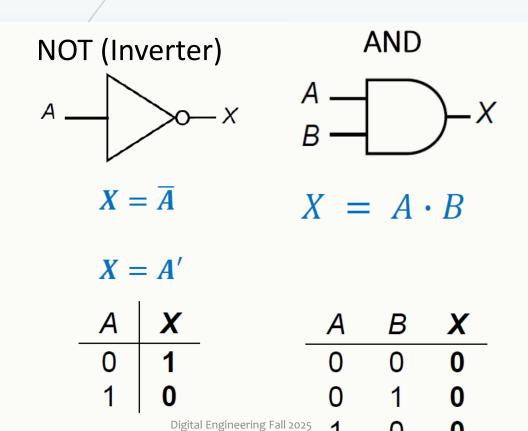
Unary gate: A NOT gate is sometimes referred to as an inverter because it inverts the input value

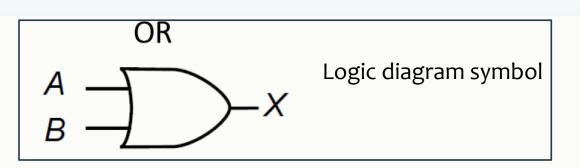
NOT (Inverter)



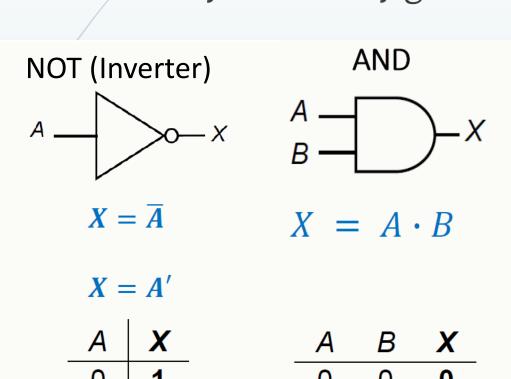
$$X = \overline{A}$$
Boolean expression
 $X = A'$

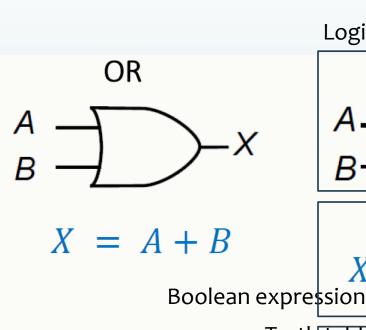
 Α	X	
0	1	Truth table
1	0	

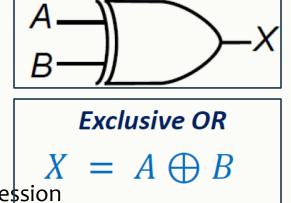

Unary and binary gates:


The Output signal from an **AND** gate is 1 (ON) if and only if **both** Input signals are 1.

Unary and binary gates:


The Output signal from an **OR** gate is on, 1 if either, or both, *Input* signals are on, 1.




$$X = A + B$$
 Boolean expression

- The Output from an **XOR** (exclusive or) is True (on, 1) if and only if the Input signals are different..
- Unary and binary gates:

Digital Engineering Fall 2025

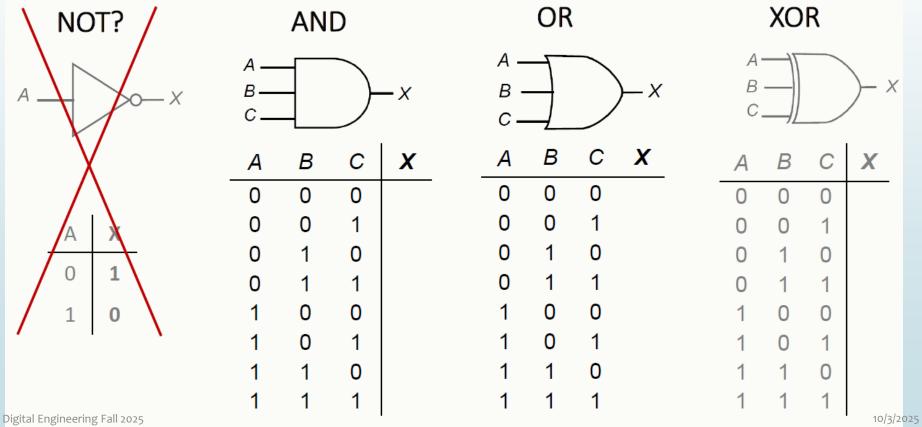
Logic diagram symbol

XOR

A B X 0 0 0

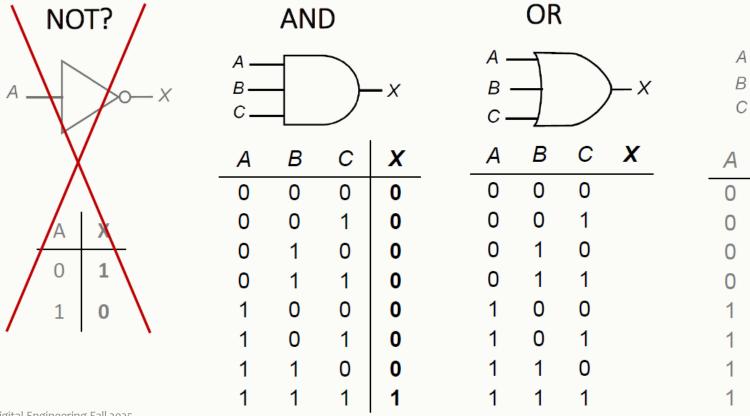
0 1 **1** 1 1 1 1

Truth table


A B X

0 0 0

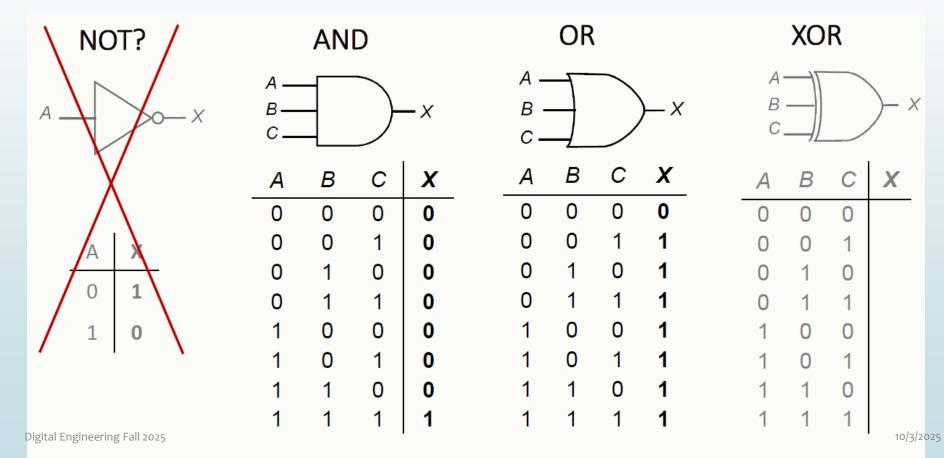
0 1 1


1 0 10/3/2024

→ With 3 inputs: Guess the outputs ??

 $X = A \cdot B \cdot C$ X = A + B + C $X = A \oplus B \oplus C$

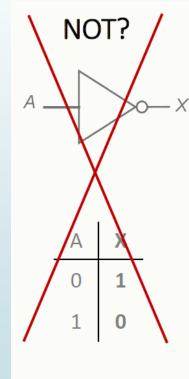
→ With 3 inputs: Guess the outputs ??

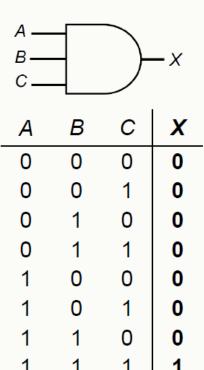

Digital Engineering Fall 2025

 $X = A \cdot B \cdot C$ X = A + B + C $X = A \oplus B \oplus C$

XOR

10/3/2025


→ With 3 inputs: Guess the outputs ??


X = A + B + C $X = A \oplus B \oplus C$

 $X = A \cdot B \cdot C$

→ With 3 inputs:

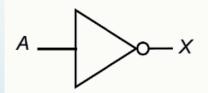
Digital Engineering Fall 2025

AND

OR

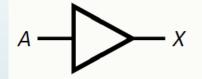
В X 10/3/2025

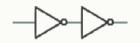
XOR


$$X = A \cdot B \cdot C$$

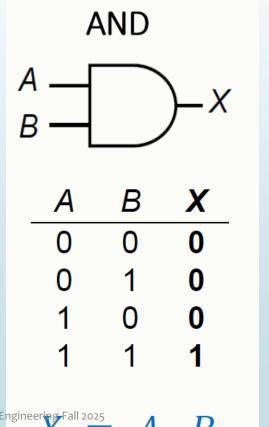
$$X = A + B + C$$

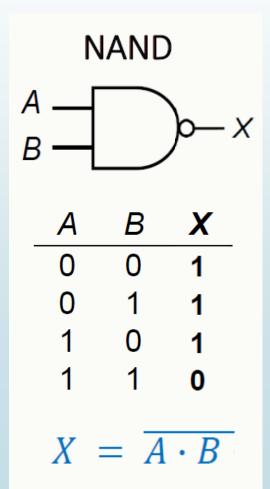
$$X = A + B + C$$
 $X = A \oplus B \oplus C$


■ Buffer: Inverted NOT:

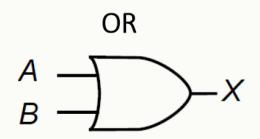


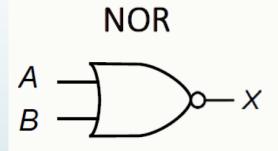
$$X = \overline{A}$$





$$X = A$$

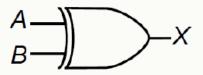

■ NAND: Inverted AND:


10/3/2025

NOR: Inverted OR:

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Digital Enginee to g Fall 2025
$$A+B$$

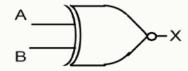

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

$$X = \overline{A + B}$$

10/3/2025

- Exclusive NOR: Inverted XOR
 - Are they different?

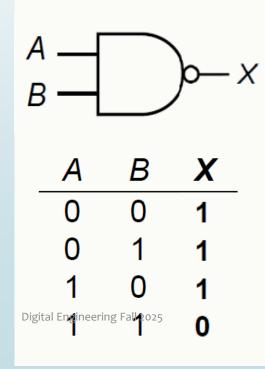
XOR

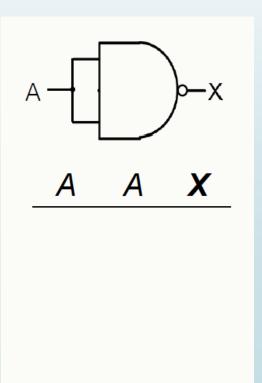

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Digital Engineering Fall 2025

$$X = A \oplus B$$

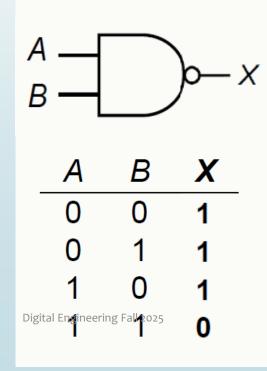
Are they similar?

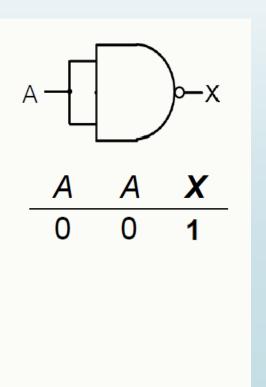

XNOR

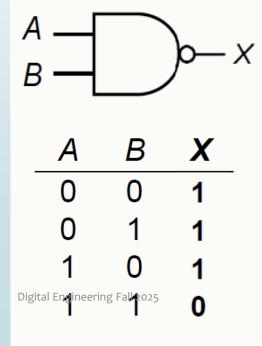


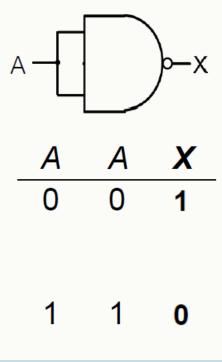
 Α	В	X
0	0	1
0	1	0
1	0	0
1	1	1

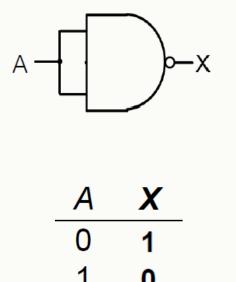
$$X = \overline{A \oplus B}$$


- NAND: What if we connected the same input?
- Truth table?




Inverted basic gates


- NAND: What if we connected the same input?
- Truth table?



- NAND: What if we connected the same input?
- Truth table?
- It will act as NOT gate (NAND and NOR gates are cheaper).

10/3/2025

19

Summary

1. AND Gate

Expression: $Y = A \cdot B \cdot C$

(Outputs true only when all inputs are true.)

2. OR Gate

Expression: Y = A + B + C

(Outputs true if at least one input is true.)

3. NOT Gate

Expression: $Y=\overline{A}$

(Outputs the inverse of the single input.)

4. NAND Gate

Expression: $Y = \overline{A \cdot B \cdot C}$

Digital Engineering Fall 2025

(Outputs false only when all inputs are true.)

5. NOR Gate

Expression: $Y = \overline{A + B + C}$

(Outputs true only when all inputs are false.)

6. XOR Gate

Expression: $Y = A \oplus B \oplus C$

(Outputs true if an odd number of inputs are true.)

7. XNOR Gate

Expression: $Y = \overline{A \oplus B \oplus C}$

(Outputs true if an even number of inputs are true.)

- ► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?
- ► Step (1): Convert into notation: Give the output a symbol X

$$X = (\overline{A \cdot B}) \cdot (A + B)$$

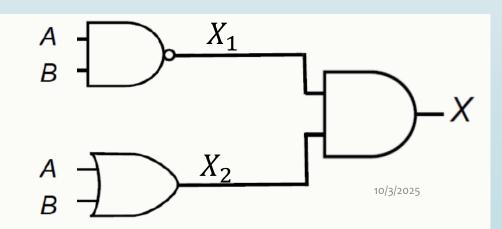
- ► Step (2): Draw circuit diagram:
 - Start with each ().
 - Draw the NAND gate.

$$-X_1 = (\overline{A.B})$$

- ► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?
- Step (1): Convert into notation: Give the output a symbol X

$$X = (\overline{A \cdot B}) \cdot (A + B)$$

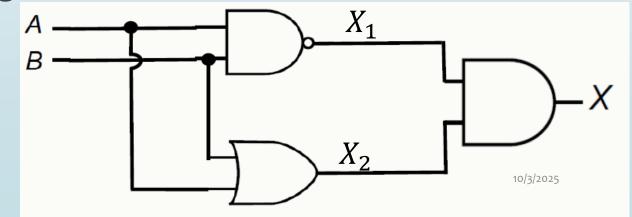
- Step (2): Draw circuit diagram:
 - Start with each ().
 - Draw the OR gate.
 - $-X_2 = (A + B)$


$$A \downarrow B \downarrow X_1$$

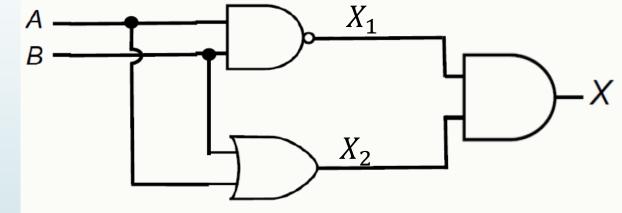
$$A \rightarrow X_2$$

- ► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?
- Step (1): Convert into notation: Give the output a symbol X

$$X = (\overline{A \cdot B}) \cdot (A + B)$$

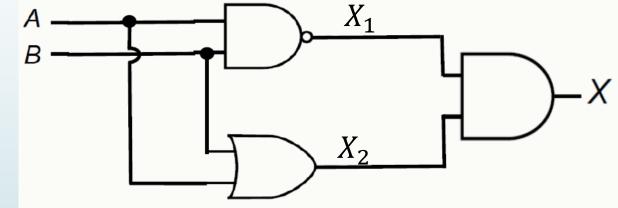

- ► Step (2): Draw circuit diagram:
 - ightharpoonup AND between X_1, X_2
 - $-X = X_1.X_2$
 - $\blacksquare X = (\overline{A.B}).(A+B)$

- ► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?
- Step (1): Convert into notation: Give the output a symbol X


$$X = (\overline{A \cdot B}) \cdot (A + B)$$

- ► Step (2): Draw circuit diagram:
 - **■**Optimize figure.

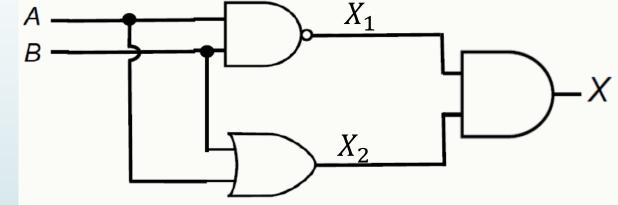
► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?


- Step (3): Truth table of X:
 - Truth table of $X_1 = ??$
 - $-X_1 = (\overline{A.B})$

ANANDD			
Α	В	X ₁	
0	0		
0	1		
1	Dig <mark>it</mark> al Eng	ineering Fall 2025	
1	1		

ANANDR

- ► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?
- Step (3): Truth table of X:
 - Truth table of $X_1 = ??$
 - $-X_1 = (\overline{A.B})$



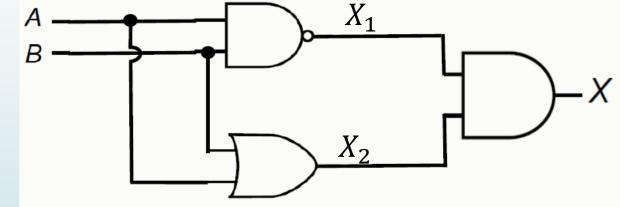
	A NAND B			
	Α	В	X ₁	
_	0	0	1	
	0	1	1	
	1	Digital Eng	gineering Fall 2025	
	1	1	0	

► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?

- Step (3): Truth table of X:
 - Truth table of $X_2 = ??$

$$-X_2 = A + B$$

A NAND B			
Α	В	X ₁	
0	0	1	
0	1	1	
1	Digital Eng	gineering Fall 2025	
1	1	0	


A UK B			
Α	В	X_2	
0	0		
0	1		
1	0		
1	1		

 $\Lambda \cap D \cap D$

► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?

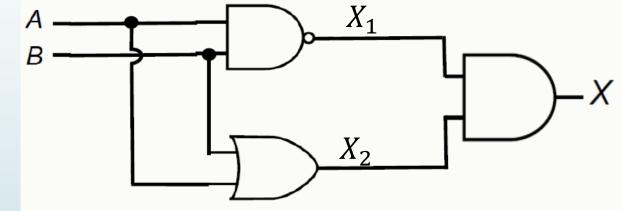
- Step (3): Truth table of X:
 - Truth table of $X_2 = ??$

$$-X_2 = A + B$$

ANANDD			
Α	В	X ₁	
0	0	1	
0	1	1	
1	Digital Eng	gineering Fall 2025	
1	1	0	

Δ ΝΔΝΟ Β

A OR B		
Α	В	X_2
0	0	0
0	1	1
1	0	1
1	1	1


► Which logic gate is "(A NAND B) AND (A OR B)" equivalent

to?

■ Step (3): Truth table of X:

ightharpoonupTruth table of X=??

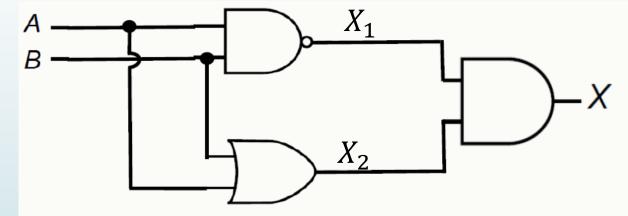
$$-X = X_1 \cdot X_2$$

A NAND B			
Α	В	X ₁	
0	0	1	
0	1	1	
1	Dig <mark>ith</mark> l Eng	ineering Fall 2025	
1	1	0	

ANANDD

A UK B			
Α	В	X_2	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

 $\Lambda \cap D \cap D$


Α	В	X ₁	X ₂	X
0	0	1	0	
0	1	1	1	
1	0	1	1	
1	1	0	1	

10/3/2025

► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?

- Step (3): Truth table of X:
 - ightharpoonupTruth table of X=??

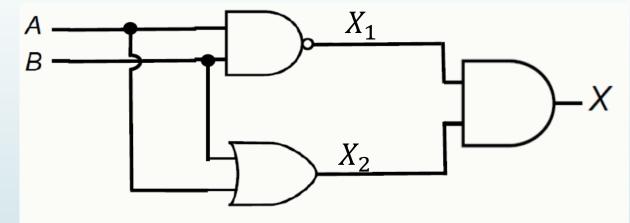
$$-X = X_1 \cdot X_2$$

ANANUB				
Α	В	X ₁		
0	0	1		
0	1	1		
1	Digital Eng	gineering Fall 2025		
1	1	0		

 Λ Λ Λ Λ Λ Λ Λ

AUND				
Α	В	X_2		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

 $\Lambda \cap R R$


Α	В		X ₂	X
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

10/3/2025

► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?

■ Step (3): Truth table of X:

■Summary:

Α	٨	IA	N	D	В
---	---	----	---	---	---

Α	В	X ₁	
0	0	1	
0	1	1	
1	Digital Eng	gineering Fall 20	025
1	1	0	

A OR B

Α	В	X ₂
0	0	0
0	1	1
1	0	1
1	1	1

A	В	X_1	X ₂	X
0	0	1	0	0
0	1	1	1	1
1	0	1	1	1
1	1	0	1	0

Α	В	X
0	0	0
0	1	1
1	0 10/3/20	1
1	19/3/20	²⁵ 0

- ► Which logic gate is "(A NAND B) AND (A OR B)" equivalent to?
- Step (4): Compare the known truth tables of AND, OR, NOR, NAND.
 - It is the truth table of XOR.

$$X = A \oplus B \text{ (XOR)}$$

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Boolean Algebra (Switching Algebra)

32

Operations with o

- From the AND truth table:
 - ■Any AND with zero is zero.

Α	В	C
0	0	0)
l <u>0</u>	<u>1</u>	_0_
1	0	0
1	1	1

- ► From the OR truth table:
 - The OR of any value with zero is the same value.

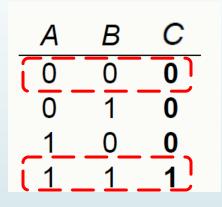
$$= 0 + X = X + 0 = X$$

Operations with 1

- From the AND truth table:
 - The AND of any value with 1 is the same value

Α	В	C
0	0	0
0	_1_	0
	0	0
l <u>1</u> _	1	_1_

- **■** From the OR truth table:
 - ► Any OR with 1 is 1

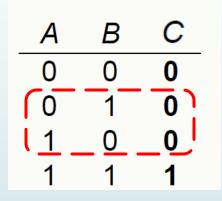

$$= 1 + X = X + 1 = 1$$

Α	В	С
0	0	0
0_	_1_	_1
1	0	1
11_	_ 1 .	_1_

Idempotent

- The operation of a variable with itself:
- From the AND truth table:

$$X \cdot X = X$$


■ From the OR truth table:

$$\blacksquare X + X = X$$

Complementarity

- The operation of a variable with its complement:
- From the AND truth table:

$$\blacksquare X \cdot \bar{X} = 0$$

■ From the OR truth table:

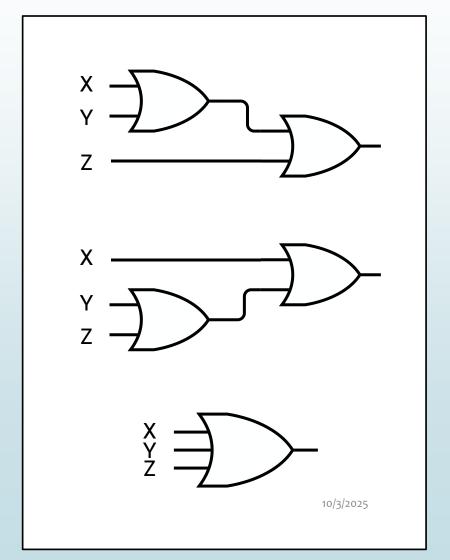
$$\blacksquare X + \overline{X} = 1$$

Simple Laws

- Involution Law:
 - -(X')' = X
- Commutative Laws:

$$-X + Y = Y + X$$

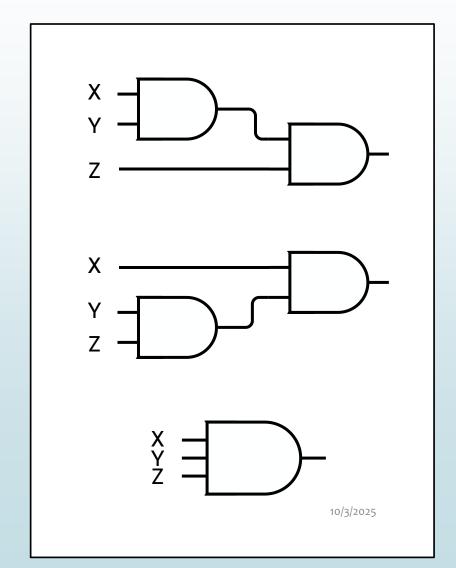
$$\blacksquare XY = YX$$


■ Distributive laws

$$-X(Y+Z) = XY + XZ$$

$$-X + YZ = (X + Y) \cdot (X + Z)$$

Associative Laws


$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

Associative Laws

$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

$$(XY)Z = X(YZ) \\ = XYZ$$

